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ABSTRACT
In the context of high-end computing systems, general-purpose
operating systems impose overhead on the applications they
support due to unneeded services. Although dedicated op-
erating systems overcome this issue, they are difficult to de-
velop or adapt. In this paper, we propose a framework,
based on the component programming paradigm, which sup-
ports the development and adaptation of such operating sys-
tems. This framework makes possible the a la carte con-
struction of operating systems which provide specific high-
end computing system characteristics.

1. INTRODUCTION
In the context of high-end computing (HEC) systems, two
main classes of operating systems are used, namely general
purpose (e.g. Linux [11], K42 [2]) and dedicated ones (e.g.
BlueGene/L [9]). General purpose operating systems pro-
vide a wide range of services and enable sophisticated ap-
plications with, for example, capabilities for visualization
and inter-networking. However, this generality comes at the
cost of performance for all applications that use the operat-
ing system because of the overheads of unnecessary services.
Several studies have demonstrated and evaluated these over-
heads. As an example, [6] showed that a dedicated operat-
ing system for high performance systems transfers messages
between nodes from 4 to 10 times faster than Linux does.
However, the development of a dedicated operating system
is complex and painful to achieve, as diverse characteristics
such as application requirements, hardware specificities or
associated programming models must be addressed.

Component-based software engineering (CBSE) appears to
be a promising solution for the development of such oper-
ating systems. Indeed, one of the main claims of CBSE is
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to offer an easier way to build complex software by simply
assembling software entities called components [18]. More-
over, a common characteristic of component models is their
explicit specification of provided and required services, al-
lowing the validation, from a functional point of view, a
given composition of components.

Several recent projects (e.g. TinyOS [17], VEST [21], Koala
[25] or Think [24]) have defined and developed component-
based operating systems in order to build dedicated operat-
ing systems for applications with minimum effort. However,
none of these projects address the specific requirements and
characteristics of HEC.

In this paper, we present a component-based approach for
developing dedicated HEC operating systems. We base our
approach on the Fractal generic component model [7], en-
hancing and adapting Fractal to the specific requirements of
HEC. The resulting component model allows us to construct
dedicated OSs adapted to application needs, hardware char-
acteristics, and the associated programming model.

The rest of this paper is organized as follows: section 2 iden-
tifies the motivations and the requirements for dedicated op-
erating systems for HEC. Section 3 presents our component-
based model which addresses those requirements. Section 4
presents some related works, while section 5 concludes the
paper.

2. MOTIVATIONS AND REQUIREMENTS
In this section we present the motivations for dedicated op-
erating systems for HEC and then identify the requirements
of such operating systems.

2.1 Motivations
A general purpose operating system trades performance for
generality, providing services that may not be necessary in
HEC contexts. We illustrate this statement by comparing
the performance of the mg and cg NAS B benchmarks on
ASCI Red hardware [16] when running two different operat-
ing systems. We use Cougar, the productized version of the
Puma operating system [26], and Linux as the general pur-
pose operating system. To make the comparison as fair to



Linux as possible, we ported the Cplant version of the Por-
tals high-performance messaging [5] layer to the ASCI Red
hardware. Cougar already utilizes this Portals for message
transmission.

Linux outperforms Cougar on the cg benchmark with small
number of nodes (less than 32) because Cougar uses older,
less optimized compilers and libraries. As the number of
nodes increases, application performance on Linux falls off.
Similar effects happen with the mg benchmark, though mg on
Cougar outperforms mg on Linux even on small numbers of
nodes despite using older compilers and libraries. A variety
of different overheads cause Linux’s performance problems
on larger-scale systems, including lack of contiguous mem-
ory layout (with associated TLB overheads) and suboptimal
node allocations (due to limitations with Linux job-launch
on ASCI Red).

Such operating system problems have also been seen in other
systems. Researchers at Los Alamos, for example, have
shown that excess services can cause dramatic performance
degradations [20]. Similarly, researchers at Lawrence Liver-
more National Laboratory have shown that operating sys-
tem scheduling problems can have a large impact on appli-
cation performance in large machines [15].

2.2 Requirements
The previous section demonstrated the overheads imposed
by general purpose operating systems. However, in order
to build dedicated operating systems for HEC, we have to
characterize how those systems may differ from instance to
instance. Four main aspects have been identified: hardware,
software, usage models, and environmental services. Finally,
in order to take into account each of these aspects, we un-
derline the properties needed to make an operating system
dedicated.

2.2.1 Hardware evolution
The first aspect to be considered is the underlying architec-
ture hardware of HEC systems. A wide variety of hardware
architecture features are currently available, among them
multiple processors, support for parcel-based processor-in-
memory [22], multiple network interfaces, programmable net-
work interfaces, and access to local storage. For example,
the first terascale system, ASCI Red, is a traditional dis-
tributed memory massively parallel processing machine with
thousands of nodes, each with a small number of processors.
In contrast, the ASCI Blue Mountain machine was composed
of 128-processor nodes, while ASCI White employs 16-way
SMP nodes. The key challenge presented by different ar-
chitectures is the need to take advantage of each of them
by defining appropriate abstractions. The hardware archi-
tecture may also evolve dynamically since nodes can fail at
run-time. This implies a global cooperation between each
node to enforce the availability and serviceability of the over-
all system, which is highly dependent on the architecture.
An operating system must also be flexible enough to inte-
grate next generation hardware with a minimal impact. For
example, the previously mentioned hardware architectures
are expected to integrate multi-core or processor-in-memory
chips in the near future.

2.2.2 Software evolution

HEC software characteristics are as varied as their hard-
ware. Software is developed in the context of a particular
programming model requiring a basic set of services. For
example, in the explicit message passing model, data must
be moved efficiently between local memory and the network.
The same software may require extended functionality be-
yond the minimal set needed to support the programming
model. Moreover, different interfaces to similar operating
system services may be required. As an example, network
packet reception may be signaled through interrupts for real-
time or event-driven software, or by extending the kernel
with specific handler codes for performance critical signals.

2.2.3 Usage models evolution
Two main classes of usage models are classically identified
for HEC systems: capability-oriented and capacity-oriented
usage. Capability-oriented usage is characterized by a small
number of codes which rely on a relatively few operating
system services. This usage model class implies a full-scale
usage of the system and allows programmers to finely tune
software using hero codes. Capability-oriented usage is usu-
ally further refined into restricted usage models such as ded-
icated or space-shared. The capacity-oriented class of usage
models supports a wide range of different codes. To do this,
it provides more complex services such as dynamic loading,
shared libraries, and language run-time facilities. Capacity-
oriented usage supports more flexible refined models such
as timesharing. As large scale systems age, they frequently
transition from specialized capability-oritented usage for a
handful of applications to capacity usage for a wide range of
applications. Their original operating systems must there-
fore be enhanced, with both high and low level services being
added or modified.

2.2.4 Environmental services evolution
The variety of shared environmental services that operat-
ing systems must support, such as file systems and check-
pointing, cannot be expected to remain constant. New im-
plementations of these services are continually being devel-
oped, and these implementations require changing operating
system support. Moreover, these services are often imple-
mented at user-level in lightweight operating systems. In
this case, the operating system must provide a way to au-
thenticate trusted shared services to applications and other
system nodes.

These hardware, software, usage model and environmental
service characteristics lead to the need for a framework to
build operating systems a la carte in order to develop ded-
icated operating systems. Each characteristic requires high
flexibility from the operating system part in order to fit the
system and thus maximize the overall system performance.
We outline the requirements of such a framework below.

2.2.5 Operating system framework requirements
Configurability is a key aspect of dedicated operating sys-
tems, since it defines the way an operating system can be
specialized to a given system. Thus, in order to be as ded-
icated as possible, an operating system has to take into ac-
count several aspects of configuration, namely depth, gran-
ularity and time.



The depth aspect defines the lowest level of the system that
can be configured. Unlike most of the classical approach,
we want full configurability. As an example, device drivers
or the scheduler may be replaced, but we are also concerned
with lower level functions such as memory page table man-
agement or process state saving. It should be possible to
configure an operating system which runs a single applica-
tion in a flat address space as well as a multitasking system
that runs on multiple CPUs. The latter case has require-
ments (such as processor synchronization) which do not ap-
ply in the first case; the systems designed for the former case
should be able to exclude synchronization for performance
reasons. In other words, we do not want to predefine a fixed
set of core functionalities.

Granularity identifies the size of the software pieces that
can be configured. Granularity is usually a tradeoff between
configurability and performance. The smaller the granular-
ity the more dedicated the system can be dedicated, but
the overhead of coordinating more, smaller components is
higher. Thus, we do not want to limit granularity as the
needs of each part of the system are different. For example,
a MMU is a relatively large unit of configuration, while syn-
chronization mechanisms such as mutexes are much smaller.

Time of configuration identifies the moment when the op-
erating system may be dedicated to a specific one of the
possible system configurations. Two main times of configu-
ration are usually identified: static (i.e. development stage)
and dynamic (i.e. execution stage). In order to maximize
the continuity of service for HEC systems and applications,
we want to be able to reconfigure an operating system dy-
namically.

3. APPROACH
Our approach is based on the component concept, which re-
duces the effort necessary to build a system. Each part of
the system is identified as a component, and they are com-
posed to form a complete operating system. We chose Frac-
tal [7] and its associated framework called Think [10, 24],
as our component system. Several reasons motivated this
choice. First, from a model point of view, Fractal provides a
minimal and simple generic component model which can be
easily extended or adapted. Since no model addresses HEC
requirements exclusively, an existing model that is easily
extended is beneficial. Secondly, Think provides a complete
tool chain for composing operating system components. Al-
though Think originally targeted embedded systems, its con-
formance to the Fractal model allows us to reuse it for HEC.
The systematic use of components makes Think fully con-
figurable and adaptable, and allows a fine grain control over
each part of a system (especially resources). Finally, the
framework does not predefine the granularity of a compo-
nent since underlying components are hierarchical. The first
part of this section provides an overview of Fractal and the
Think framework, while the second part focuses on the ex-
tension applied to the model to deal with HEC specific re-
quirements. The last part illustrates the proposed approach
through an example.

3.1 A component-based approach
The Fractal model aims to implement, deploy and manage
(i.e. monitor and dynamically reconfigure) complex software

systems. It promotes a component approach and defines a
component model made of five key concepts: component,
content, controller, interface and binding. A component is
a run-time entity and is made of a content and a controller.
A controller aims to control the content of the component
(e.g. life-cycle or configuration), while a content implements
the functionality. This distinction enforces the separation of
concern principle since the content focuses on the functional
part while the controller focuses on the non-functional one.
A component has an arbitrary size and a content may be
made of other components, enabling hierarchical composi-
tion. The hierarchical recursion ends at primitive compo-
nents which are defined by content using an implementation
language (e.g. C or assembly code) rather than a configura-
tion of other components. An interface is an access point to a
component that supports a finite set of methods. Interfaces
can be either server, which corresponds to access points ac-
cepting incoming method calls, or client, which corresponds
to access points accepting outgoing method calls. Moreover
server interfaces have a given multiplicity, which specifies
an upper bound (1,n,infinite) on the number of client inter-
faces they can be bound to. Finally, communication between
components is only possible if their interfaces are bound. A
binding is an oriented connection between client and server
interfaces and can only be set if the methods defined by the
client interfaces are a subset of the ones defined by the server
interface.

The Think framework aims to build configurable embedded
operating systems. It implements the Fractal component
model, which is systematically applied to build a system.
Think provides a set of tools to define, describe and compose
components, as well as a library of components. Think de-
fines an Interface Description Language (IDL) in order to al-
low local or remote interoperation of components, as well as
an Architecture Description Language (ADL) that describes
a system configuration. The IDL is a subset of Java and is
used to define component interfaces. The ADL is used to
describe each individual component and their different com-
position and bindings. The Think tool chain includes the
IDL and ADL compilers as well as an offline configurator
which creates operating system images by assembling com-
ponents (no facilities for dynamic configuration are avail-
able). The component library is mainly divided in two parts,
the hardware dependent layer and classical operating system
services. The hardware dependent components reify excep-
tions and provide memory management and a set of device
drivers. The existing set of components has been mainly
developed for ARM and PowerPC processors. The classi-
cal operating system service components implement various
services such as memory organization (e.g. flat or paged
memory), thread components, scheduling (e.g. round-robin,
priority) or networking (e.g. TCP/IP protocol stack).

Experiments using Think demonstrate that component based
development is not necessarily less efficient. The main cost
engendered by components is the memory footprint over-
head1 that has been estimated to an average of 2% (over-
head increasing as average component size decreases). How-

1The memory overhead is caused by system component
structure maintained during execution in order to allow dy-
namic management of components.



ever, the component approach allows us to master operat-
ing system complexity and enables a fine grain control over
resources, since each part of the system is reified as a com-
ponent.

3.2 Components for HEC
Think has limitations with respect to specific requirements
for HEC systems. As an example, Think only provides the
classical function call communication pattern, while event-
based communication is required for HEC. Another lack of
the Think framework is its limited component library con-
cerning HEC needs such as memory management. Due to
space limitations, we present in this section only our pro-
posed extension for event communication.

Although the classical function call is a natural program-
ming model, it is not easy to split across execution domains
because of the synchronization frequently implicit in it (e.g
return values). Events are usually more difficult to program
with. However, they are easier to split and manage across
execution contexts since they are naturally asynchronous
and do not return values.

The main goal of the event extension is to provide a sim-
ple and efficient way to program with events. The exten-
sion has to be as open as possible, avoiding predefinition of
the event semantic and communication pattern. To achieve
these goals, events are reified as components. Events there-
fore can be managed as classical components, including their
life cycle (e.g. start, pause or stop events) or attributes.
Think event components can be serialized when consumers
and producers are distributed. The extension implementa-
tion provides two kind of events: the first one implements
a synchronous semantic (a producer waits for all consumers
to consume the event), while the second one provides an
asynchronous semantic (producers do not wait, and events
are placed in a queue once they are generated). Each type
can be applied to various communication patterns. The im-
plementation provides the mediator communication pattern
(when several consumers are registered to a single event) as
well as direct communication. In this way, the extension
avoids the cost of the mediator pattern when only one pro-
ducer and one consumer are present. In order to describe the
event communication between components, the event exten-
sion enhances the original Think ADL, adding key words to
describe which event is produced/consumed by components
and to select a communication pattern.

Although the event extension simplifies event-based pro-
gramming, it has a cost, mainly in memory consumption.
The binary form of an asynchronous event in the PowerPC
Think implementation is less than 2 kB. Note that if the
event is just a fixed integer without any need of manage-
ment, it does not have to be implemented by a compo-
nent. The current implementation requires events with simi-
lar management requirements (e.g. life-cycle) and semantics
to be bundled in a single component.

3.3 Example
We illustrate the proposed approach using a componentized
version of Puma [26], a lightweight operating system for
massively parallel systems developed at Sandia National Lab-

oratories. Puma is a message passing kernel based on the
concept of portals, which are openings in the address space
of an application process. Puma has three main parts: the
quintessential kernel (Q-Kernel), the process control thread
(PCT) and the application processes (AP). The Q-Kernel is
responsible for controlling access to the physical resources
provided by a processor node. More precisely, it is in charge
of communication facilities and address space protection.
The PCT provides process management functions (e.g pro-
cess creation and scheduling) and manages access to the
physical resources. Thus, control mechanisms and manage-
ment policies are separated. Finally, the application pro-
cesses are created and scheduled by the PCT and have access
to the hardware through the Q-Kernel. Moreover, applica-
tion processes communicate through portals, placing mes-
sages directly into the memory of receivers. Different types
of portals are defined, distinguished by the management pol-
icy associated with the portal memory.

A natural way to componentize Puma is to keep the original
design. Accordingly, the Q-Kernel, PCT, and application
processes are all reified into component types. The Q-Kernel
component provides several interfaces, which are referred as
the kernel entry points in the original design. Each entry
point is either used by the PCT, the application processes
or both. In order to enforce separation between the entry
points, the Q-Kernel component provides one interface ded-
icated to the PCT, one to the application processes and a
last one for both of them. Moreover, the Q-Kernel is made
of several sub-components. These are the context compo-
nent, which provides information about the current running
contexts; the out-going messages component, which is in
charge of sending messages; the interrupt component, which
reifies the different possible interrupts and exceptions; and
finally the Q-logic component. Q-logic implements the logic
of the Q-Kernel and requires services from the other sub-
components. Figure 1 illustrates the Q-Kernel component.

communication_exceptions

Outgoing−Messages

Q−Kernel

Q−Logic

Context

PCT_entry_points APP_entry_pointsPCT_APP_entry_points

Interrupts

switch_context register_msg

timer

exceptions

Figure 1: Design of the Q-Kernel component.

The PCT component has two required interfaces in order to
communicate with the Q-Kernel component via the entry-
points. Moreover, it provides interfaces in order to create
and schedule application processes components. It also re-
quires several interfaces from the application process com-
ponent in order to check their mail-boxes. The PCT and the
application processes exchange requests through mail-boxes
owned by each process. The PCT, unlike the Q-Kernel, is
not composed of sub-components.



While, the PCT and Q-Kernel are singletons, the AP com-
ponent may be instantiated several times. An AP compo-
nent requires one interface to the Q-Kernel (for Q-Kernel
entry-points) and provides one interface to the PCT (for
mail-box check). Moreover, an AP is made of four different
components. The first one, called process-logic component,
implements the logic of the of the application process; the
others are dedicated to the different task of managing a pro-
cess in Puma. Separation of concerns is enforced by sepa-
rating the technical aspect (application component) to the
non-technical one. The other AP component are a mail-box
component, a signal component and a portal one. Moreover,
it is worth noting that the portal component may have dif-
ferent implementations but still provides the same interface
to the application component. Figure 2 illustrates the design
of the application process component.

mailbox−check
Mail−Box

AP

Signals

Portals

Process−Logic

App_entrypoints

mailbox−fill

read

get−signalssignals−fill

Figure 2: Design of the application process compo-
nent.

4. RELATED WORKS
Several projects have tried to deal with configurability in
operating systems. According to [23], we can classify these
projects in as general purpose systems, dedicated systems
and distributed systems. Although all these projects have
the same main goal, their implementations and therefore
their configuration possibilities vary.

In the area of general purpose systems, MetaOS [14], Spin
[4], OSKit [12] and Linux [11] define mechanisms in order to
be adapted to a given environment. However, these mech-
anisms are either too coarse grain (Linux, OSKit) to allow
an efficient customization, or are based on costly mecha-
nism such as the meta approach in MetaOS. In contrast,
our approach provides arbitrary granularity to achieve ef-
ficient customization, but also addresses system invariants
order to minimize configuration cost.

The area of dedicated systems is the most prolific domain
for configurable operating systems. Projects such as Peb-
ble [13], eCos [1], Scout [19] or TinyOS [17] provide tools
for building dedicated operating systems for embedded sys-
tems. However, Pebble, eCos and Scout only provide coarse
grain configuration and are moreover based on an underly-
ing kernel which can not itself be reconfigured. TinyOS has
a similar goal and approach to ours since it provides a full
componentization of the operating system and allows event
communication. However, TinyOS only provides configura-
tion at development stage, preventing the flexibility needed
by HEC applications.

In the area of distributed systems, the existing configurable
operating systems again are not fine grain enough to allow

efficient customization (e.g K42 [2], Choices [8]). Moreover,
these projects pre-define the overall structure of an oper-
ating system, prohibiting migration between capability and
capacity designs.

5. CONCLUSION AND FUTURE WORKS
In this paper, we have presented an argument for a frame-
work for building dedicated operating systems in high-end
computing systems. Based on the results of preliminary ex-
periments, we conclude that the demands of current and fu-
ture high systems cannot be addressed by a general-purpose
operating system, but rather by a dedicated one with adap-
tation capabilities. To address this problem, we propose an
approach based on a component-based framework in order to
build operating systems a la carte. Our approach extends an
existing framework initially dedicated to embedded systems
to capture the specific requirements of HEC systems. Our
approach minimizes the overhead of unneeded features, and
enables the construction of new operating systems adaptable
to evolving demands and requirements.

We are currently working on multiple implementation ef-
forts. One of our goals in so doing is to provide “subtrees”
of components that can be used as-is to build operating
system kernels for HEC systems. The first such subtree
contains components for memory management. The Think
framework contains a MMU hierarchy with implementations
for PowerPC and the ARM processor. We are generalizing
those interfaces to accomodate the Xen hypervisor mem-
ory management design, as a first step toward a functional
implementation on top of Xen [3]. Other efforts include the
reengineering the Puma operating system with our proposed
approach as described in section 3.3.
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